简介:范文网小编为你整理了多篇相关的《2024七年级上册第五章数学知识点》,但愿对你工作学习有帮助,当然你在范文网还可以找到更多《2024七年级上册第五章数学知识点》。
重视数学公式。有很多人数学学不好就是因为对概念和公式不够重视,表现为对数学概念的理解只是停留在表明,不去理解消化,对数学概念的特殊情况不明白。下面是小编整理的七年级上册第五章数学知识点,仅供参考希望能够帮助到大家。
七年级上册第五章数学知识点
一、相交线
1.邻补角与对顶角
注意点:
⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
⑶如果∠α与∠β互为邻补角,则一定有∠α ∠β=180°;反之如果∠α ∠β=180°, 则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线
⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直, 其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
⑵垂线性质 1:过一点有且只有一条直线与已知直线垂直 (与平行公理相比较记)
⑶垂线性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。简称:垂线段最短。
3.垂线的画法:
⑴过直线上一点画已知直线的垂线;
⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
4.点到直线的距离
直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。应该结合图形进行记忆。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。分析它们的联系与区别。
⑴垂线与垂线段
区别:垂线是一条直线,不可度量长度;垂线段是一条线段,可以度量 长度。
联系:具有垂直于已知直线的共同特征。(垂直的性质)
⑵两点间距离与点到直线的距离
区别:两点间的距离是点与点之间,点到直线的距离 是点与直线之间。
联系:都是线段的长度;点到直线的距离是特殊的两点(即已知点与 垂足)间距离。
⑶线段与距离
距离是线段的长度,是一个量;线段是一种图形,它们之间不能等同。
二、平行线
1.平行线的概念:
在同一平面内,不相交的两条直线叫做平行线,直线 a 与直线b 互相平行,记作 a ‖b 。
2.两条直线的位置关系
在同一平面内,两条直线的位置关系只有两种:⑴相交;⑵平行。
①有且只有一个公共点,两直线相交;
②无公共点,则两直线平行;
③两个或两个以上公共点,则两直线重合(因为两点确定一条直线)
3.平行公理
平行线的存在性与惟一性 经过直线外一点,有且只有一条直线与这条直线平行。
4.平行公理的推论
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
5.三线八角
两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。
6.如何判别三线八角
判别同位角、内错角或同旁内角的关键是找到构成这两个角的“三线”,有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。
7.两直线平行的判定方法
方法一 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行
简称:同位角相等,两直线平行
方法二 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行
简称:内错角相等,两直线平行
方法三 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行
简称:同旁内角互补,两直线平行
几何符号语言:
∵ ∠3=∠2
∴ AB‖CD(同位角相等,两直线平行)
∵ ∠1=∠2
∴ AB‖CD(内错角相等,两直线平行)
∵ ∠4+∠2=180°
∴ AB‖CD(同旁内角互补,两直线平行)
请注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。平行线的判定是写角相等,然后写平行。
典型例题:判断下列说法是否正确,如果不正确,请给予改正:
⑴不相交的两条直线必定平行线。
⑵在同一平面内不相重合的两条直线,如果它们不平行,那么这两条直线一定相交。
⑶过一点可以且只可以画一条直线与已知直线平行
解答:⑴错误,平行线是“在同一平面内不相交的两条直线”。“在同一平面内”是一项重要 条件,不能遗漏。
⑵正确
⑶不正确,正确的说法是“过直线外一点”而不是“过一点”。因为如果这一点不在 已知直线上,是作不出这条直线的平行线的。
…… 此处隐藏862字,全部文档请下载后查看。喜欢就下载吧 ……
2024七年级上册第五章数学知识点
该篇《2024七年级上册第五章数学知识点》范文为DOC格式,范文网为全国知名范文网站,下载本文后稍作修改便可使用,即刻完成写稿任务。网址:https://www.zhsm.net/a/3ned8w.shtml