简介:范文网小编为你整理了多篇相关的《2024七年级上册数学书第一章知识点》,但愿对你工作学习有帮助,当然你在范文网还可以找到更多《2024七年级上册数学书第一章知识点》。
数学给予人们的不仅是知识,更重要的是能力,这种能力包括观察实验、收集信息、归纳类比、直觉判断、逻辑推理、建立模型和精确计算。这些能力和培养,将使人终身受益。下面是小编整理的七年级上册数学书第一章知识点,仅供参考希望能够帮助到大家。
七年级上册数学书第一章知识点
一、正数与负数
1.在实际中表示意义相反的量 上升5米记为5米; -8米则表示下降8米。
2.正数:大于0的数。
3.负数:在正数的前面加上“-”。
4.0的含义:
①既不是正数也不是负数;
②0在计数时表示没有,比如0元;
③0表示某种量的基准,比如0℃表示温度的基准
5.有理数的分类
分数概念
(1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数;
(2)无限不循环小数不属于有理数,如:π=3.141592... 2.010010001...
“非”的概念
非负数:正数和0 非正分数:负分数
非正数:负数和0 非负分数:正分数
非负整数:正整数和0
非正整数:负整数和0
二、数轴
1.三要素:原点、正方向、单位长度。通常原点用“O”表示,向右的方向为正方向,单位长度为1.
2.如何画数轴
①画直线(一般画成水平的),定原点,标出原点“O”;
②取原点向右的方向为正方向,并标出箭头;
③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点。
3.数轴上的点与有理数:
(1)数轴上的点与有理数一一对应 (2)左边的数<右边的数
三、相反数
①只有符号不同的两个数,叫做互为相反数。0的相反数是0。
②a的相反数-a
③a与b互为相反数:a+b=0
④a-b的相反数是:-a+b或b-a
⑤a+b的相反数是:-a-b
⑥求一个数的相反数方法:在这个数的前面加“-”号.
⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。
四、绝对值
1.几何意义:从数轴上表示a的点到原点的距离即为|a|
2. ①一个正数的绝对值等于它本身; 当a是正数时,|a|=a;
②一个负数的绝对值等于它的相反数; 当a是负数时,|a|=-a;
③0的绝对值等于0。 当a=0时,|a|=0。
3.互为相反数的两个数的绝对值相等。
五、有理数的大小比较
1.正数>0>负数;
2.两个负数比较
①右边的点表示的数比左边的点表示的数大。
②绝对值大的反而小。
六、有理数的运算
1.有理数的加法:
加法一般步骤:
①确定符号:同号取相同的符号。
异号取绝对值大的加数的符号。
②确定绝对值:同号将绝对值相加。
异号用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。一个数与0相加,仍得这个数。
用字母表示加法的交换律a+b=b+a;加法结合律a+b+c=(a+b)+c=a+(b+c)。
三个或三个以上有理数相加,可以写成这些数的连加式,对于连加式,根据加法
交换律和加法结合律,可以任意交换加数的位置,也可先把其中的某几个数相加。
根据算式的特征,恰当地运用运算律,可以使运算简便:
①符号相同的数先相加——同号结合法
②互为相反数的先相加——相反数结合法
③分母相同的数先相加——同分母结合法
④正数与正数,小数与小数相加——同形结合法
2.有理数的减法:
减法法则:减去一个数,等于加上这个数的相反数。
加减法混合运算,把减法转化为加法再计算。
3.代数和:有理数加减混合运算时,将加减法统一成加法运算,转化为求几个正数或负数的和。
在一个和式中,可以把各个加数的括号和括号前面的加号省略不写,写成省略加号的和的形式。
4.有理数的乘法:
乘法步骤:1、确定符号:同号正,异号负。
2、绝对值:求积。
任何数与0相乘,都得0。任何数与—1相乘都得这个数的相反数。
多个有理数相乘的运算:
几个非0有理数相乘时,当负因数个数是偶数时,积为正;负因数个数是奇数时,积为负;
乘法交换律,乘法结合律,乘法分配律;
5.有理数的除法:
除法步骤:1、确定符号:同号正,异号负。
2、绝对值:相除。
除以一个不等于0的数等于乘上这个数的倒数。
0除以任何一个不等于0的数都得0。
七、倒数
①乘积是1的两个数叫作互为倒数。
②a的倒数是a分之1(a≠0)
③a与b互为倒数 ab=1
④正数的倒数还是正数,负数的倒数还是负数,0没有倒数。
八、乘方
①求几个相同因数的积的运算叫做乘方
a·a·…·a=an
②底数、指数、幂
九、科学记数法
…… 此处隐藏1004字,全部文档请下载后查看。喜欢就下载吧 ……
2024七年级上册数学书第一章知识点
该篇《2024七年级上册数学书第一章知识点》范文为DOC格式,范文网为全国知名范文网站,下载本文后稍作修改便可使用,即刻完成写稿任务。网址:https://www.zhsm.net/a/3mzd4g.shtml