欢迎访问范文网!

2024数学学业水平知识点

投稿:范文网 收藏 下载文档

简介:范文网小编为你整理了多篇相关的《2024数学学业水平知识点》,但愿对你工作学习有帮助,当然你在范文网还可以找到更多《2024数学学业水平知识点》。

因为高中开始努力,所以前面的知识肯定有一定的欠缺,这就要求自己要制定一定的计划,更要比别人付出更多的努力,相信付出的汗水不会白白流淌的,收获总是自己的。小编呕心沥血收集整理的数学学业水平知识点,下面小编就带大家分享展示一下!!!

数学学业水平知识点1

考点一、映射的概念

1.了解对应大千世界的对应共分四类,分别是:一对一多对一一对多多对多

2.映射:设A和B是两个非空集合,如果按照某种对应关系f,对于集合A中的任意一个元素x,在集合B中都存在的一个元素y与之对应,那么,就称对应f:A→B为集合A到集合B的一个映射(mapping).映射是特殊的对应,简称“对一”的对应。包括:一对一多对一

考点二、函数的概念

1.函数:设A和B是两个非空的数集,如果按照某种确定的对应关系f,对于集合A中的任意一个数x,在集合B中都存在确定的数y与之对应,那么,就称对应f:A→B为集合A到集合B的一个函数。记作y=f(x),xA.其中x叫自变量,x的取值范围A叫函数的定义域;与x的值相对应的y的值函数值,函数值的集合叫做函数的值域。函数是特殊的映射,是非空数集A到非空数集B的映射。

2.函数的三要素:定义域、值域、对应关系。这是判断两个函数是否为同一函数的依据。

3.区间的概念:设a,bR,且a

①(a,b)={xa

⑤(a,+∞)={>a}⑥[a,+∞)={≥a}⑦(-∞,b)={

考点三、函数的表示方法

1.函数的三种表示方法列表法图象法解析法

2.分段函数:定义域的不同部分,有不同的对应法则的函数。注意两点:①分段函数是一个函数,不要误认为是几个函数。②分段函数的定义域是各段定义域的并集,值域是各段值域的并集。

考点四、求定义域的几种情况

①若f(x)是整式,则函数的定义域是实数集R;

②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;

③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;

④若f(x)是对数函数,真数应大于零。

⑤.因为零的零次幂没有意义,所以底数和指数不能同时为零。

⑥若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

⑦若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题

数学学业水平知识点2

1.求函数的单调性:

利用导数求函数单调性的基本方法:设函数yf(x)在区间(a,b)内可导,(1)如果恒f(x)0,则函数yf(x)在区间(a,b)上为增函数;(2)如果恒f(x)0,则函数yf(x)在区间(a,b)上为减函数;(3)如果恒f(x)0,则函数yf(x)在区间(a,b)上为常数函数。

利用导数求函数单调性的基本步骤:①求函数yf(x)的定义域;②求导数f(x);③解不等式f(x)0,解集在定义域内的不间断区间为增区间;④解不等式f(x)0,解集在定义域内的不间断区间为减区间。

反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数yf(x)在区间(a,b)内可导,

(1)如果函数yf(x)在区间(a,b)上为增函数,则f(x)0(其中使f(x)0的x值不构成区间);

(2)如果函数yf(x)在区间(a,b)上为减函数,则f(x)0(其中使f(x)0的x值不构成区间);

(3)如果函数yf(x)在区间(a,b)上为常数函数,则f(x)0恒成立。

2.求函数的极值:

设函数yf(x)在x0及其附近有定义,如果对x0附近的所有的点都有f(x)f(x0)(或f(x)f(x0)),则称f(x0)是函数f(x)的极小值(或极大值)。

可导函数的极值,可通过研究函数的单调性求得,基本步骤是:

(1)确定函数f(x)的定义域;(2)求导数f(x);(3)求方程f(x)0的全部实根,x1x2xn,顺次将定义域分成若干个小区间,并列表:x变化时,f(x)和f(x)值的变化情况:

(4)检查f(x)的符号并由表格判断极值。

3.求函数的值与最小值:

如果函数f(x)在定义域I内存在x0,使得对任意的xI,总有f(x)f(x0),则称f(x0)为函数在定义域上的值。函数在定义域内的极值不一定,但在定义域内的最值是的。

…… 此处隐藏745字,全部文档请下载后查看。喜欢就下载吧 ……

2024数学学业水平知识点

2024数学学业水平知识点。下面小编给大家分享2024数学学业水平知识点,希望能帮助到大家。 2024数学学业水平知识点文档下载网址链接:
推荐度:
点击下载文档文档为docx格式

该篇《2024数学学业水平知识点》范文为DOC格式,范文网为全国知名范文网站,下载本文后稍作修改便可使用,即刻完成写稿任务。网址:https://www.zhsm.net/a/1xwagg.shtml

221381
领取福利

微信扫码领取福利

2024数学学业水平知识点

微信扫码分享